Recommendations for the Fatigue Design of Steel Structures

"This book emphasizes the physical and practical aspects of fatigue and fracture. It covers mechanical properties of materials, differences between ductile and brittle fractures, fracture mechanics, the basics of fatigue, structural joints, high temperature failures, wear, environmentally-induced failures, and steps in the failure analysis process." -- publishers website.

Fatigue of Metals

Recommendations for the Fatigue Design and Steel Structures

Maintenance, Safety, Risk, Management and Life-Cycle Performance of Bridges contains lectures and papers presented at the Ninth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2018), held in Melbourne, Australia, 9-13 July 2018. This volume consists of a book of extended abstracts and a USB card containing the full papers of 393 contributions presented at IABMAS 2018, including the T.Y. Lin Lecture, 10 keynote lectures, and 382 technical papers from 40 countries. The contributions presented at IABMAS 2018 deal with the state of the art as well as emerging concepts and innovative applications related to the main aspects of bridge maintenance, safety, risk, management and life-cycle performance. Major topics include: new design methods, bridge codes, heavy vehicle and load models, bridge management systems, prediction of future traffic models, service life prediction, residual service life, sustainability and life-cycle assessments, maintenance strategies, bridge...
FATIGUE DESIGN

A successful German book. Both traditional and modern concepts are described.

COMPUTER-AIDED FATIGUE DESIGN OF STEEL STRUCTURES

FATIGUE DESIGN OF MARINE STRUCTURES

EUROCODE 3: DESIGN OF STEEL STRUCTURES - PART 1-9: FATIGUE

ULTIMATE LIMIT STATE DESIGN OF STEEL-PLATED STRUCTURES

FATIGUE AND FRACTURE

This volume contains a selection of papers presented at Fatigue Design 95 held in Helsinki, Finland from 5-8 September 1995. The papers have been peer reviewed and present practical aspects for the design of components and structures to avoid fatigue failure. Topics covered include: fatigue design experiences, ground vehicle components, component reliability, multiaxial fatigue, notch analysis, service loading, welded structures, probabilistics aspects in fatigue, fatigue design optimization.

FATIGUE DESIGN OF STEEL AND COMPOSITE STRUCTURES

Steel plated structures are important in a variety of marine and land-based applications, including ships, offshore platforms, power and chemical plants, box girder bridges and box girder cranes. The basic strength members in steel plated structures include support members (such as stiffeners and plate girders), plates, stiffened panels/grillages and box girders. During their lifetime, the structures constructed using these members are subjected to various types of loading which is for the most part operational, but may in some cases be extreme or even accidental. Ultimate Limit State Design of Steel Plated Structures reviews and describes both fundamentals and practical design procedures in this field. The derivation of the basic mathematical expressions is presented together with a thorough discussion of the assumptions and the validity of the underlying
expressions and solution methods. Particularly valuable coverage in the book includes: * Serviceability and the ultimate limit state design of steel structural systems and their components * The progressive collapse and the design of damage tolerant structures in the context of marine accidents * A ge related structural degradation such as corrosion and fatigue cracks Furthermore, this book is also an easily accessed design tool which facilitates learning by applying the concepts of the limit states for practice using a set of computer programs which can be downloaded. In addition, expert guidance on mechanical model test results as well as nonlinear finite element solutions, sophisticated design methodologies useful for practitioners in industries or research institutions, selected methods for accurate and efficient analyses of nonlinear behavior of steel plated structures both up to and after the ultimate strength is reached, is provided. Designed as both a textbook and a handy reference, the book is well suited to teachers and university students who are approaching the limit state design technology of steel plated structures for the first time. The book also meets the needs of structural designers or researchers who are involved in civil, marine and mechanical engineering as well as offshore engineering and naval architecture.

Guide to Fatigue Design and Assessment of Steel Products

This book provides background and guidance on the use of the structural hot-spot stress approach to fatigue analysis. The book also offers Design S-N curves for use with the structural hot-spot stress for a range of weld details, and presents parametric formulas for calculating stress increases due to misalignment and structural discontinuities. Highlighting the extension to structures fabricated from plates and non-tubular sections. The structural hot-spot stress approach focuses on cases of potential fatigue cracking from the weld toe and it has been in use for many years in tubular joints. Following an explanation of the structural hot-spot stress, its definition and its relevance to fatigue, the book describes methods for its determination. It considers stress determination from both finite element analysis and strain gauge measurements, and emphasizes the use of finite element stress analysis, providing guidance on the choice of element type and size for use with either solid or shell elements. Lastly, it illustrates the use of the recommendations in four case studies involving the fatigue assessment of welded structures using the structural hot-spot stress.

Fatigue Handbook

Soon after oil and gas exploration and production began in the North Sea in the 1960s, it became apparent that the steel structure design developed for offshore activities in the Gulf of Mexico was not adequate when transferred to the rigorous North Sea environment. Realizing the great need for a better understanding of the fatigue phenomenon, concerned materials scientists at SINTEF and Det norske Veritas prepared a five-year programme for intensified research on fatigue of offshore steel structures. It became the National Five Year Programme for Fatigue of Offshore Steel Structures in 1981. This text comprises a study of fatigue in offshore steel structures. It seeks to make results in the area available in a form that can be utilized and understood by those responsible for the different stages in engineering, design, fabrication and service of offshore structures.

Guide Specifications for Fatigue Design of Steel Bridges, 1989

Fatigue design recommendations for steel structures

Design of Steel Structures for Fatigue
Fatigue Design and Reliability

This volume addresses the specific subject of fatigue, a subject not familiar to many engineers, but still relevant for proper and good design of numerous steel structures. It explains all issues related to the subject: Basis of fatigue design, reliability and various verification formats, determination of stresses and stress ranges, fatigue strength, application range and limitations. It contains detailed examples of applications of the concepts, computation methods and verifications.

Manual for the Geotechnical Design of Structures to Eurocode 7

This volume represents a selection of papers presented at the Third International Symposium on Fatigue Design, Fatigue Design 1998, held in Espoo, Finland, 26-29 May, 1998. One objective of this symposium series was to help bridge the gap that sometimes exists between researchers and engineers responsible for designing components against fatigue failure. The 21 selected papers provide an up-to-date survey of engineering practice and a preview of design methods that are advancing toward application. Reliability was selected as a key theme for FD'98. During the design of components and structures, it is not sufficient to combine mean material properties, average usage parameters, and pre-selected safety factors. The engineer must also consider potential scatter in material properties, different end users, manufacturing tolerances and uncertainties in fatigue damage models. Judgement must also be made about the consequences of potential failure and the required degree of reliability for the structure or component during its service life. Approaches to ensuring reliability may vary greatly depending on the structure being designed. Papers in this volume intentionally provide a multidisciplinary perspective on the issue. Authors represent the ground vehicle, heavy equipment, power generation, ship building and other industries. Identical solutions cannot be used in all cases because design methods must always provide a balance between accuracy and simplicity. The point of balance will shift depending on the type of input data available and the component being considered.

Fatigue Strength of Welded Structures

Modern analytical theories of fatigue coupled with a knowledge of processing effects on metals make up the sound basis for designing machine parts that are free from unexpected failure. Fatigue Design: Life Expectancy of Machine Parts provides the information and the tools needed for optimal design. It highlights practical approaches for effectively solving fatigue problems, including minimizing the risk of hidden perils that may arise during production processes or from exposure to the environment. The material is presented with a dual approach: the excellent coverage of the theoretical aspects is accentuated by practical illustrations of the behavior of machine parts. The theoretical approach combines the fundamentals of solid mechanics, fatigue analysis, and crack propagation. The chapters covering fatigue theories are given special emphasis, starting with the basics and progressing to complicated multiaxial nonlinear problems. The practical approach concentrates on the effects of surface processing on fatigue life and it illustrates many faceted fatigue problems taken from case studies. The solutions demonstrate the authors' detailed analyses of failure and are intended to be used as preventive guidelines. The cases are a unique feature of the book. The numerical method used is the finite element method, and is presented with clear explanations and illustrations. Fatigue Design: Life Expectancy of Machine Parts is an extremely valuable tool for both practicing design engineers and engineering students.

Fatigue Design

Fatigue Design, Second Edition discusses solutions of previous problems in fatigue as controlled by their particular conditions. The book aims to demonstrate the limitations of some methods and explores the realism and validity of the resulting solutions. The text is comprised of four chapters that tackle a specific area of concern. Chapter 1 provides the introduction and covers the scope, level, and limitations of the book. Chapter 2 deals with the characteristics of design approach, and Chapter 3 talks about the
Recommendations for Fatigue Design of Welded Joints and Components

The key to avoidance of fatigue, which is the main cause of service failures, is good design. In the case of welded joints, which are particularly susceptible to fatigue, design rules are available. However, their effective use requires a good understanding of fatigue and an appreciation of problems concerned with their practical application. Fatigue strength of welded structures has incorporates up-to-date design rules with high academic standards whilst still achieving a practical approach to the subject. The book presents design recommendations which are based largely on those contained in recent British standards and explains how they are applied in practice. Attention is also focused on the relevant aspects of fatigue in welded joints which are not yet incorporated in codes thus providing a comprehensive aid for engineers concerned with the design or assessment of welded components or structures. Background information is given on the fatigue lives of welded joints which will enable the engineer or student to appreciate why there is such a contrast between welded and unwelded parts, why some welded joints perform better than others and how joints can be selected to optimise fatigue performance.

Recommendations for the Fatigue Design of Steel Structures

This book provides a basis for the design and analysis of welded components that are subjected to fluctuating forces, to avoid failure by fatigue. It is also a valuable resource for those on boards or commissions who are establishing fatigue design codes. For maximum benefit, readers should already have a working knowledge of the basics of fatigue and fracture mechanics. The purpose of designing a structure taking into consideration the limit state for fatigue damage is to ensure that the performance is satisfactory during the design life and that the survival probability is acceptable. The latter is achieved by the use of appropriate partial safety factors. This document has been prepared as the result of an initiative by Commissions XIII and XV of the International Institute of Welding (IIW).

Fatigue Design of Steel and Composite Structures

Modern Trends in Research on Steel, Aluminium and Composite Structures includes papers presented at the 14th International Conference on Metal Structures 2021 (ICMS 2021, Poznań, Poland, 16-18 June 2021). The 14th ICMS summarised a few years' theoretical, numerical and experimental research on steel, aluminium and composite structures, and presented new concepts. This book contains six plenary lectures and all the individual papers presented during the Conference. Seven plenary lectures were presented at the Conference, including "Research developments on glass structures under extreme loads", Parhp3D – The parallel MPI/openMPI implementation of the 3D hp-adaptive FE code", "Design of beam-to-column steel-concrete composite joints: from Eurocodes and beyond", "Stainless steel structures – research, codification and practice", "Testing, modelling and design of bolted joints – effect of size, structural properties, integrity and robustness", "Design of hybrid beam-to-column joints between RHS tubular columns and I-section beams" and "Selected aspects of designing the cold-formed steel structures". The individual contributions delivered by authors covered a wide variety of topics: - Advanced analysis and direct methods of design, - Cold-formed elements and structures, - Composite structures, - Engineering structures, - Joints and connections, - Structural stability and integrity, - Structural steel, metallurgy, durability and behaviour in fire. Modern Trends in Research on Steel, Aluminium and Composite Structures is a useful reference source for academic researchers, graduate students as well as designers and fabricators.
This book presents experimental results and theoretical advances in the field of ultra-low-cycle fatigue failure of metal structures under strong earthquakes, where the dominant failure mechanism is ductile fracture. Studies on ultra-low-cycle fatigue failure of metal materials and structures have caught the interest of engineers and researchers from various disciplines, such as material, civil and mechanical engineering. Pursuing a holistic approach, the book establishes a fundamental framework for this topic, while also highlighting the importance of theoretical analysis and experimental results in the fracture evaluation of metal structures under seismic loading. Accordingly, it offers a valuable resource for undergraduate and graduate students interested in ultra-low-cycle fatigue, researchers investigating steel and aluminum structures, and structural engineers working on applications related to cyclic large plastic loading conditions.

Fatigue of Welded Structures

This volume addresses the specific subject of fatigue, a subject not familiar to many engineers, but still relevant for proper and good design of numerous steel structures. It explains all issues related to the subject: Basis of fatigue design, reliability and various verification formats, determination of stresses and stress ranges, fatigue strength, application range and limitations. It contains detailed examples of applications of the concepts, computation methods and verifications.

Design and Analysis of Fatigue Resistant Welded Structures

Modern Trends in Research on Steel, Aluminium and Composite Structures

Fatigue Design of Components

Fatigue considerations have been included in structural steel design specifications for many years, usually in the form of decreased design stresses in the case of stress reversals. However, with the advent of high-strength steels and wide use of welding, metal fatigue has become of greater concern. The provisions governing fatigue in the various specifications have become more complex. While current fatigue provisions are considerably more sophisticated than most earlier versions, they still may be considered unrealistic in some respects. For example, the cycle requirements are based on general observations rather than on quantitative data, no attempt is made to consider cumulative damage, etc. Considerable further studies are needed and substantial revisions of fatigue expected in the future.

Fatigue Design of Steel and Composite Structures

This volume addresses the specific subject of fatigue, a subject not familiar to many engineers, but still relevant for proper and good design of numerous steel structures. It explains all issues related to the subject: Basis of fatigue design, reliability and various verification formats, determination of stresses and stress ranges, fatigue strength, application range and limitations. It contains detailed examples of applications of the concepts, computation methods and verifications.

Fatigue of Structures and Materials
Fatigue Design of Offshore Steel Structures

This volume addresses the specific subject of fatigue, a subject not familiar to many engineers, but still relevant for proper and good design of numerous steel structures. It explains all issues related to the subject: Basis of fatigue design, reliability and various verification formats, determination of stresses and stress ranges, fatigue strength, application range and limitations. It contains detailed examples of applications of the concepts, computation methods and verifications.

Guidelines for Fracture-safe and Fatigue-reliable Design of Steel Structures

Fatigue Design of Steel and Composite Structures

Local approaches to fatigue assessment are used to predict the structural durability of welded joints, to optimise their design and to evaluate unforeseen joint failures. This standard work provides a systematic survey of the principles and practical applications of the various methods. It covers the hot spot structural stress approach to fatigue in general, the notch stress and notch strain approach to crack initiation and the fracture mechanics approach to crack propagation. Seam-welded and spot-welded joints in structural steels and aluminium alloys are also considered. This completely reworked second edition takes into account the tremendous progress in understanding and applying local approaches which has been achieved in the last decade. It is a standard reference for designers, structural analysts and testing engineers who are responsible for the fatigue-resistant in-service behaviour of welded structures. Completely reworked second edition of a standard work providing a systematic survey of the principles and practical applications of the various methods Covers the hot spot structural stress approach to fatigue in general, the notch stress and notch strain approach to crack initiation and the fracture mechanics approach to crack propagation. Witten by a distinguished team of authors

Fatigue Design of Steel and Composite Structures

Structures, Steels, Structural steels, Structural design, Stress analysis, Design, Structural systems, Fatigue, Welding, Design calculations, Joints, Fracture, Classification systems, Dimensions, Stress, Strength of materials, Bibliography

fib Model Code for Concrete Structures 2010

Structural Hot-Spot Stress Approach to Fatigue Analysis of Welded Components

This is a theoretical and practical guide for fatigue design of marine structures including sailing ships and offshore oil structures.

Fatigue Assessment of Welded Joints by Local Approaches

Modern analytical theories of fatigue coupled with a knowledge of processing effects on metals make up the sound basis for designing machine parts that are free from unexpected failure. Fatigue Design: Life Expectancy of Machine Parts provides the information and the tools needed for optimal design. It highlights practical approaches for
effectively solving fatigue problems, including minimizing the risk of hidden perils that may arise during production processes or from exposure to the environment. The material is presented with a dual approach: the excellent coverage of the theoretical aspects is accented by practical illustrations of the behavior of machine parts. The theoretical approach combines the fundamentals of solid mechanics, fatigue analysis, and crack propagation. The chapters covering fatigue theories are given special emphasis, starting with the basics and progressing to complicated multiaxial nonlinear problems. The practical approach concentrates on the effects of surface processing on fatigue life and it illustrates many faceted fatigue problems taken from case studies. The solutions demonstrate the authors' detailed analyses of failure and are intended to be used as preventive guidelines. The cases are a unique feature of the book. The numerical method used is the finite element method, and is presented with clear explanations and illustrations.

Fatigue Design: Life Expectancy of Machine Parts is an extremely valuable tool for both practicing design engineers and engineering students.

Ultra-low-Cycle Fatigue Failure of Metal Structures under Strong Earthquakes

Maintenance, Safety, Risk, Management and Life-Cycle Performance of Bridges

This volume addresses the specific subject of fatigue, a subject not familiar to many engineers, but still relevant for proper and good design of numerous steel structures. It explains all issues related to the subject: Basis of fatigue design, reliability and various verification formats, determination of stresses and stress ranges, fatigue strength, application range and limitations. It contains detailed examples of applications of the concepts, computation methods and verifications.

Fatigue Design

Fatigue of structures and materials covers a wide scope of different topics. The purpose of the present book is to explain these topics, to indicate how they can be analyzed, and how this can contribute to the designing of fatigue resistant structures and to prevent structural fatigue problems in service. Chapter 1 gives a general survey of the topic with brief comments on the significance of the aspects involved. This serves as a kind of a program for the following chapters. The central issues in this book are predictions of fatigue properties and designing against fatigue. These objectives cannot be realized without a physical and mechanical understanding of all relevant conditions. In Chapter 2 the book starts with basic concepts of what happens in the material of a structure under cyclic loads. It illustrates the large number of variables which can affect fatigue properties and it provides the essential background knowledge for subsequent chapters. Different subjects are presented in the following main parts: • Basic chapters on fatigue properties and predictions (Chapters 2–8) • Load spectra and fatigue under variable-amplitude loading (Chapters 9–11) • Fatigue tests and scatter (Chapters 12 and 13) • Special fatigue conditions (Chapters 14–17) • Fatigue of joints and structures (Chapters 18–20) • Fiber-metal laminates (Chapter 21) Each chapter presents a discussion of a specific subject.

Recommendations for the Fatigue Design of Steel Structures

Fatigue of Metals provides a general account of the failure of metals due to fatigue, a subject of great practical importance in the field of engineering and metallurgy. The book covers a wide range of topics on the study of the fatigue of metals. The text presents in the first three chapters the characteristics and detection of fatigue fractures; methods of fatigue testing; and the fatigue strengths of different materials. The resistance of materials to fatigue under complex stress; the determination and effects of stress concentration; influence of surface treatment on fatigue strength; and effects of corrosion and temperature are also studied in detail. In relation to the previous chapters of fatigue information, a chapter is devoted to engineering design to prevent fatigue. The last two chapters provide a brief historical survey of the developments of the study of the mechanism of fatigue and fatigue of non-metallic materials such as wood, plastic, rubber, glass, and concrete. Mechanical engineers, designers, metallurgists, researchers,
and students will find the book as a good reference material.

Copyright code: dae6b67aa21f7a9b8ff212dbdaed26d3