Green Chemistry for Sustainable Textiles

The book presents an in-depth review from eminent industry practitioners and researchers of the emerging green face of multidimensional environmental chemistry. Topics such as green chemistry in industry, green energy: solar photons to fuels, green nanotechnology and sustainability, and green chemistry modeling address a wide array of issues encouraging the use of economical ecofriendly benign technologies, which not only improve the yield, but also illustrates the concept of zero waste, a subject of interest to both chemists and environmentalists alike.

Innovations in Green Chemistry and Green Engineering

As the demands of society increase in their quest for safer, better and more convenient products, the chemical industry is faced on the one hand with the possible depletion of natural resources and on the other with a large share of responsibility for the damage that may be caused to the environment and the population by their products. The main area of chemical activity consists of the conversion of various base metals into substances and materials with new chemical and physical properties. A substantial amount of research is being carried out regarding this conversion process, which now must incorporate sustainability requirements. In addition, other associated activities, such as the chemical supply chain, performance measurements and different types of management tasks, must meet sustainability standards. Achieving sustainable chemistry based on clean processing routes, efficient use of resources, renewable materials, adequate management systems and other activities is not only essential for the future of a competitive chemical industry but also for a sustainable and healthy society and environment. Key to sustainable chemistry are innovative and cleaner technologies and the development of appropriate business models, performance measurements, and better integrated management. This book contains papers on the latest academic and industrial research in the field presented at the first international conference convened on the sustainable chemistry.

Sustainable Chemistry

Green Sustainable Process for Chemical and Environmental Engineering and Science: Switchable Solvents explores the preparation, properties, chemical processes and applications of this class of green solvents. The book provides an in-depth overview on the area of switchable solvents in various industrial applications, focusing on the purification and extraction of chemical compounds utilizing green chemistry protocols that include liquid-liquid, solid-liquid, liquid-gas and lipids separation technologies. In addition, it includes recent advances in greener extraction and separation processes. This book will be an invaluable guide to students, professors, scientists and R&D industrial specialists working in the field of sustainable chemistry, organic, analytical, chemical engineering, environmental and pharmaceutical sciences. Provides a broad overview of switchable solvents in sustainable chemical processes Compares the use of switchable solvents as greener solvents over conventional solvents Outlines eco-friendly organic synthesis and chemical processes using switchable solvents Lists various industrial separations/extraction processes using switchable solvents
Go Green for Environmental Sustainability

This first book to focus on catalytic processes from the viewpoint of green chemistry presents every important aspect: · Numerous catalytic reductions and oxidations methods · Solid-acid and solid-base catalysis · C-C bond formation reactions · Biocatalysis · Asymmetric catalysis · Novel reaction media like e.g. ionic liquids, supercritical CO2 · Renewable raw materials Written by Roger A. Sheldon -- without doubt one of the leaders in the field with much experience in academia and industry -- and his co-workers, the result is a unified whole, an indispensable source for every scientist looking to improve catalytic reactions, whether in the college or company lab.

Handbook of Green Chemistry and Technology

In the nearly 10 years since the publication of the bestselling first edition of Introduction to Green Chemistry, interest in green chemistry and clean processes has grown so much that topics, such as fluoruous biphasic catalysis, metal organic frameworks, and process intensification, barely mentioned in the first edition, have become major areas of research. In addition, government funding has ramped up the development of fuel cells and biofuels. It reflects the evolving focus from pollution remediation to pollution prevention. Copiously illustrated with over 800 figures, this second edition provides an update from the frontiers of the field. New and expanded research topics: Metal-organic frameworks Solid acids for alkylation of isobutene by butanes Carbon molecular sieves Mixed micro- and mesoporous solids Organocatalysis Process intensification and gas phase enzymatic reactions Hydrogen storage for fuel cells Reactive distillation Catalysts in action on an atomic scale Updated and expanded current events topics: Industry resistance to inherently safer chemistry Nuclear power Removal of mercury from vaccines Removal of mercury and lead from primary explosives Biofuels Uses for surplus glycerol New hard materials to reduce wear Electronic waste Smart growth The book covers traditional green chemistry topics, including catalysis, benign solvents, and alternative feedstocks. It also discusses relevant but less frequently covered topics with chapters such as Chemistry of Longer Wear and Population and the Environment. This coverage highlights the importance of chemistry to everyday life and demonstrates the benefits the expanded exploitation of green chemistry can have for society.

Catalysis for Clean Energy and Environmental Sustainability

Pharmaceutical manufacturing was one of the first industries to recognize the importance of green chemistry, with pioneering work including green chemistry metrics and alternative solvents and reagents. Today, other topical factors also have to be taken into consideration, such as rapidly depleting resources, high energy costs and new legislation. This book addresses current challenges in modern green chemical technologies and sustainability thinking. It encompasses a broad range of topics covered by the CHEM21 project - Europe's largest public-private partnership project which aims to develop a toolbox of sustainable technologies for green chemical intermediate manufacture. Divided into two sections, the book first gives an overview of the key green chemistry tools, guidance and considerations aimed at developing greener processes, before moving on to look at cutting-edge synthetic methodologies. Featuring innovative research, this book is an invaluable reference for chemists across academia and industry wanting to further their knowledge and understanding of this important topic.

Green Chemistry for Environmental Remediation

Written by Stanley Manahan, Fundamentals of Sustainable Chemical Science has been carefully designed to provide a basic introduction to chemistry, including organic chemistry and biochemistry, for readers with little or no prior background in the subject. Manahan, bestselling author of many environmental texts, presents the material in a practical

Asperger Syndrome, the Universe and Everything

Processes that meet the objectives of green chemistry and chemical engineering minimize waste and energy use, and eliminate toxic by-products. Given the ubiquitous nature of products from chemical processes in our lives, green chemistry and chemical engineering are vital components of any sustainable future. Gathering together ten peer-reviewed articles from the Encyclopedia of Sustainability Science and Technology, Innovations in Green Chemistry and Green Engineering provides a comprehensive introduction to the state-of-the-art in this key area of sustainability research. Worldwide experts present the latest developments on topics ranging from organic batteries and green catalytic transformations to green nanoscience and nanotoxicology. An essential, one-stop reference for professionals in research and industry, this book also fills the need for an authoritative course text in environmental and green chemistry and chemical engineering at the upper-division undergraduate and graduate levels.

Worldwide Trends in Green Chemistry Education
The principles of Green Chemistry aim to improve the sustainability of chemical processes and reduce the generation of hazardous substances. There has been great growth in the field over the past few years and the number of research groups working in this area is still increasing. Now one of the biggest challenges is to embed the Green Chemistry ideals of safety and sustainability as standard, both in industry and academia. In order to do this, it is important to create resources that detail different applications and approaches. Green Synthetic Processes and Procedures brings together expert contributors from across a number of areas of green synthesis to cover a diverse array of subjects. Providing a thorough overview of the current green synthetic toolbox, from biocatalysis to sonochemistry, this book is a useful resource for any chemist wishing to design cleaner and safer processes.

Green and Sustainable Medicinal Chemistry

Taking an interdisciplinary approach, this new volume brings together innovative research, new concepts, and novel developments in the application of new tools in green chemistry and sustainable technology. The diverse coverage includes chapters on ionic liquids as green solvents, an environmentally friendly approach to the synthesis and biological evaluation of α-aminophosphonate derivatives, the application of nanotechnology in biological sciences and green chemistry, eco-friendly polymers, the effect of global warming and greenhouse gases on environmental system, and more.

Green Sustainable Process for Chemical and Environmental Engineering and Science

This book highlights topics ranging from green chemistry and engineering to bioremediation, smart technologies, and sustainable business practices. The common threads running through this volume are the need for urgent action, a vision for a sustainable future, and the awareness that solutions must be widely accessible and advance the welfare of all nations, especially in the face of climate change. The authors delineate how we can protect and restore natural ecosystem potential to achieve environmental sustainability. They provide a clear idea of today's environmental challenges and solutions, focus on energy use patterns and the reduction of energy consumption, advocate for increased environmental awareness, and discuss environmental monitoring systems. The book contains many domestic and international case studies and showcases visionary ideas in action to illustrate sustainability principles. This volume provides an in-depth reference for stakeholders from academia, government, and industry on the latest research in environmental sustainability solutions. Inspired by the common wisdom that we do not inherit this Earth from our ancestors but instead borrow it from our children, the authors offer solutions to emergent problems. This research comprises an important contribution to the global effort to build a more sustainable tomorrow.

Green Chemistry in Environmental Sustainability and Chemical Education

"As the summary of a vision, the book is brilliant. One can feel the enthusiasm of the authors throughout! see it as a vehicle for initiating a fruitful dialogue between chemical producers and regulatory enforcers without the confrontation, which often characterizes such interactions." -Martyn Poliakoff, Green Chemistry, February 'Its is an introductory text taking a broad view and interrogating a wide range of topics including synthetic methodologies, alternative solvents and catalysts, biosynthesis and alternative feedstocks. There are exercises for students and the last chapter deals with future trends' Aslib

Introduction to Green Chemistry, Second Edition

Ionic Liquid-based Technologies for Environmental Sustainability explores the range of sustainable and green applications of IL materials achieved in recent years, such as gas solubility, biomass pre-treatment, biocatalysis, energy storage, gas separation and purification technologies. The book also provides a reference material for future research in IL-based technologies for environmental and energy applications, which are much in-demand due to sustainable, reusable and eco-friendly methods for highly innovative and applied materials. Written by eminent scholars and leading experts from around the world, the book aims to cover the synthesis and characterization of broad range of ionic liquids and their sustainable applications. Chapters provide cutting-edge research with state-of-the-art developments, including the use of IL-based materials for the removal of pharmaceuticals, dyes and value-added metals. Describes the fundamentals and major applications of ionic liquid materials Covers up-to-date developments in novel applications of IL materials Provides practical tips to aid researchers who work on ionic liquid applications

Green Chemistry for Environmental Sustainability

Chemistry is considered to be one of the prime causes of environmental pollution and degradation. The United Nations General Assembly also addressed the environmental challenges in its Sustainable Development Goals (SDGs), which have been adopted in 2015. A closer look shows that to meet these goals chemistry will play an important role. Green chemistry encompasses design and synthesis of environmentally benign chemical processes, green approaches to minimize and/or remediate environmental pollution, the
development of biomaterials, biofuel, and bioenergy production, biocatalysis, and policies and ethics in green chemistry. When products in use today become waste, we need to treat that waste so that hazardous substances are not re-circulated into new products. In this context, circular economy is also an important point of discussion, which focuses on recycling, reuse and use of renewable sources. The theme of the International Conference on “Green Chemistry in Environmental Sustainability & Chemical Education (ICGC-2016) held in Delhi from 17-18 November 2016 was to discuss the emerging green trends in the direction of sustainability and environmental safety. ICGC-2016 consisted of keynote, plenary and invited lectures, panel discussion, contributed oral papers and poster presentations. The conference provided a platform for high school students, undergraduate and postgraduate students, teaching fraternity and young researchers to interact with eminent scientists and academicians from all over the world who shared their valuable views, experience and research on the harmonious methods in chemistry for a sustainable environment. This volume of proceedings from the conference provides an opportunity for readers to engage with a selection of refereed papers that were presented during the ICGC-2016 conference. The overarching goal of this book is to discuss most recent innovations and concerns in green chemistry as well as practical challenges encountered and solutions adopted to remediate a scathed environment into a pristine one. It includes an extensive variety of contributions from participants of ICGC-2016 that demonstrate the importance of multidisciplinary and interdisciplinary approach to problem solving within green chemistry and environmental management. The proceedings is thus a green chemistry monograph resulting from the fruitful deliberations in the conference, which will deeply enhance awareness about our responsibility towards the environment.

Green Chemistry Metrics

Green chemistry already draws on many techniques and approaches developed by theoretical chemists, whilst simultaneously revealing a whole range of interesting new challenges for theoretical chemists to explore. Highlighting how work at the intersection of these fields has already produced beneficial results, Green Chemistry and Computational Chemistry: Shared Lessons in Sustainability is a practical, informative guide to combining green and theoretical chemistry principles and approaches in the development of more sustainable practices. Beginning with an introduction to both theoretical chemistry and green chemistry, the book goes on to explore current approaches being taken by theoretical chemists to address green and sustainable chemistry issues, before moving on to highlight ways in which green chemists are employing the knowledge and techniques of theoretical chemistry to help in developing greener processes. The future possibilities for theoretical chemistry in addressing sustainability issues are discussed, before a selection of case studies provides good insight into how these interactions and approaches have been successfully used in practice. Highlights the benefits of green and theoretical chemistry groups working together to tackle sustainability issues across both academia and industry Supports readers in easily selecting the most appropriate path through the book for their own needs Presents a range of examples examining the practical implications and outcomes of interdisciplinary approaches

Green Sustainable Process for Chemical and Environmental Engineering and Science

Providing an overview of the current status of chemistry; regarding the implementation of clean, eco-friendly, less improvident manufacturing processes. This book acknowledges a more eco-conscious face of multi-dimensional chemistry: the need, principle, evolution, strategies and bioethical concerns for sustainable development of environment.

Green Chemistry and the Ten Commandments of Sustainability

The book gives a systematic introduction to green chemistry principles and technologies in inorganic and organic chemistry, polymer sciences and pharmaceutical industry. It also discusses the use of biomass and marine resources for synthesis as well as renewable energy utilization and the concepts and evaluation of recycling economy and eco-industrial parks.

Green Synthetic Processes and Procedures

Increased consumption of electronic equipment has brought with it a greater demand for rare earth elements and metals. Adding to this is the growth in low carbon technologies such as hybrid fuel vehicles. It is predicted that the global supply of rare earth elements could soon be exhausted. A sustainable approach to the use and recovery of rare earth elements is needed, and this book addresses the political, economic and research agendas concerning them. The problem is discussed thoroughly and a multi-disciplinary team of authors from the chemistry, engineering and biotechnology sectors presents a range of solutions, from traditional metallurgical methods to innovations in biotechnology. Case studies add value to the theory presented, and indirect targets for recovery, such as municipal waste and combustion ash are considered. This book will be essential reading for researchers in academia and industry tackling sustainable element recovery, as well as postgraduate students in chemistry, engineering and biotechnology. Environmental scientists and policy makers will also benefit from reading about potential benefits of recovery from waste
Green Chemistry and Engineering

Solvents are ubiquitous throughout the chemical industry and are found in many consumer products. As a result, interest in solvents and their environmental impact has been steadily increasing. However, in order to achieve maximum integration of new green solvents into the relevant chemical sectors, clarification of the social, economic, and environmental implications of solvent substitution are needed. This book explores the solvent life cycle, highlighting the challenges faced at various points, from production, through the supply-chain and downstream use to end-of-life treatment. It also discusses the potential benefits that a green chemistry and bio-based economy approach could bring. The current state-of-the-art of green solvents is evaluated along these lines, in addition to reviewing their applications with an appreciation of sustainability criteria. Providing a critical assessment on emerging solvents and featuring case studies and perspectives from different sectors, this is an important reference for academics and industrialists working with solvents, as well as policy-makers involved in bio-based initiatives.

Element Recovery and Sustainability

When the Nobel Prize Committee recognized the importance of green chemistry with its 2005 Nobel Prize for Chemistry, this relatively new science came into its own. Although no concerted agreement has been reached yet about the exact content and limits of this interdisciplinary discipline, there seems to be increasing interest in environmental topic

Chemistry for Green Environment

Quantifying the environmental impact of chemical technologies and products, and comparing alternative products and technologies in terms of their “greenness” is a challenging task. In order to characterise various aspects of a complex phenomenon, a number of different indicators are selected into a metric. This book outlines fundamental developments in chemistry and chemical technology that have led to the development of green chemistry, green chemical technology, and sustainable chemical technology concepts, and provide a foundation for the development of the corresponding metrics. It includes different approaches to metrics, and case study examples of their applications, and problems in practice. Green Chemistry Metrics is aimed at graduate students and researchers, practitioners and environmental managers in industry, metrics developers, and governmental agencies and NGOs in the area of environmental protection and sustainability. The main focus will be on chemical processes, however the book will be relevant to other industry sectors such as energy, electronics, healthcare, food and consumer products.

The Periodic Table of the Elements of Green and Sustainable Chemistry

This book is part of a two-volume work that offers a unique blend of information on realistic evaluations of catalyst-based synthesis processes using green chemistry principles and the environmental sustainability applications of such processes for biomass conversion, refining, and petrochemical production. The volumes provide a comprehensive resource of state-of-the-art technologies and green chemistry methodologies from researchers, academics, and chemical and manufacturing industrial scientists. The work will be of interest to professors, researchers, and practitioners in clean energy catalysis, green chemistry, chemical engineering and manufacturing, and environmental sustainability. This volume focuses on the potentials, recent advances, and future prospects of catalysis for biomass conversion and value-added chemicals production via green catalytic routes. Readers are presented with a mechanistic framework assessing the development of product selective catalytic processes for biomass and biomass-derived feedstock conversion. The book offers a unique combination of contributions from experts working on both lab-scale and industrial catalytic processes and provides insight into the use of various catalytic materials (e.g., mineral acids, heteropolyacid, metal catalysts, zeolites, metal oxides) for clean energy production and environmental sustainability.

Environmental Chemistry for a Sustainable World

Educating the next generation of chemists about green chemistry issues, such as waste minimisation and clean synthesis, is vital for environmental sustainability. This book enables green issues to be taught from the underlying principles of all chemistry courses rather than in isolation. Chapters contributed by green chemistry experts from across the globe, with experience in teaching at different academic levels, provide a coherent overview of possible approaches to incorporate green chemistry into existing curriculums. Split into three sections, the book first introduces sustainability and green chemistry education, before focussing on high school green chemistry education initiatives and green chemistry education at undergraduate and post-graduate levels. Useful laboratory experiments and in-class activities to aid teaching are included. This book is a valuable resource for chemical educators worldwide who wish to integrate green chemistry into chemical education in a systematic and holistic way. It is also of interest to anyone wanting to learn more about the different approaches adopted around the world in sustainability education.
Fundamentals of Sustainable Chemical Science

The field of Green and Sustainable Chemistry has demonstrated its ability to address some of greatest challenges as outlined by the United Nations Sustainability Development Goals (SDGs). The many aspects of Green and Sustainable Chemistry have been presented in the format of the Periodic Table of the Elements in order to illustrate the importance of each of the types of contributions. The book presents the Humanitarian Elements that underlie the reasons that drive the field of Green and Sustainable Chemistry, the scientific and technological elements of green chemistry and engineering the manifest the discovery and invention of new sustainable technologies, the Enabling Systems Conditions that allow sustainable solutions to go to scale, and the Noble Elements that are the vision for the sustainable world we strive for.

Green Chemistry for Environmental Remediation

Green Chemistry for Sustainable Textiles: Modern Design and Approaches provides a comprehensive survey of the latest methods in green chemistry for the reduction of the textile industry’s environmental impact. In recent years industrial R&D has been exploring more sustainable chemicals as well as eco-friendly technologies in the textile wet processing chain, leading to a range of new techniques for sustainable textile manufacture. This book discusses and explores basic principles of green chemistry and their implementation along with other aspects of cleaner production strategies, as well as new and emerging textile technologies, providing a comprehensive reference for readers at all levels. Potential benefits to industry from the techniques covered in this book include: Savings in water, energy and chemical consumption, waste minimization as well as disposal cost reduction, and production of high added value sustainable textile products to satisfy consumer demands for comfort, safety, aesthetic, and multi-functional performance properties. Innovative emerging methods are covered as well as popular current technologies, creating a comprehensive reference that facilitates comparisons between methods Evaluates the fundamental green chemistry principles as drivers for textile sustainability Explains how and why to use renewable green chemicals in the textile wet processing chain

Green Chemistry and Applications

Catalysis, Green Chemistry and Sustainable Energy: New Technologies for Novel Business Opportunities offers new possibilities for businesses who want to address the current global transition period to adopt low carbon and sustainable energy production. This comprehensive source provides an integrated view of new possibilities within catalysis and green chemistry in an economic context, showing how these potential new technologies may become useful to business. Fundamentals and specific examples are included to guide the transformation of idea to innovation and business. Offering an overview of the new possibilities for creating business in catalysis, energy and green chemistry, this book is a beneficial tool for students, researchers and academics in chemical and biochemical engineering. Discusses new developments in catalysis, energy and green chemistry from the perspective of converting ideas to innovation and business Presents case histories, preparation of business plans, patent protection and IP rights, creation of start-ups, research funds and successful written proposals Offers an interdisciplinary approach combining science and business

Green Chemistry and Catalysis

Green Sustainable Processes for Chemical and Environmental Engineering and Science: Supercritical Carbon Dioxide as Green Solvent provides an in-depth review on the area of green processes for the industry, focusing on the separation, purification and extraction of medicinal, biological and bioactive compounds utilizing supercritical carbon dioxide as a green solvent and their applications in pharmaceuticals, polymers, leather, paper, water filtration, textiles and more. Chapters explore polymerization, polymer composite production, polymer blending, particle production, microcellular foaming, polymer processing using supercritical carbon dioxide, and a method for the production of micro- and nano-scale particles using supercritical carbon dioxide that focuses on the pharmaceutical industry. A brief introduction and limitations to the practical use of supercritical carbon dioxide as a reaction medium are also discussed, as are the applications of supercritical carbon dioxide in the semiconductor processing industry for wafer processing and its advantages and obstacles. Reviews available green solvents for extraction, separation, purification and synthesis Outlines environmentally friendly chemical processes in many applications, i.e., organic reactions, metal recovery, etc. Includes numerous, real industrial applications, such as polymers, pharmaceuticals, leather, paper, water filtration, textiles, food, oils and fats, and more Gives detailed accounts of the application of supercritical CO2 in polymer production and processing Provides a process for extraction, separation and purification of compounds of biological medicinal importance Gives methods for nanoparticle production using supercritical carbon dioxide Provides a systematic discussion on the solubility of organic and organometallic compounds

Ionic Liquid-Based Technologies for Environmental Sustainability

The past, present, and future of green chemistry and greenengineering From college campuses to
corporations, the past decade witnessed a rapidly growing interest in understanding sustainable chemistry and engineering. Green Chemistry and Engineering: A Practical Design Approach integrates the two disciplines into a single study tool for students and a practical guide for working chemists and engineers. In Green Chemistry and Engineering, the authors—each highly experienced in implementing green chemistry and engineering programs in industrial settings—provide the bottom-line thinking required to not only bring sustainable chemistry and engineering closer together, but to also move business towards more sustainable practices and products. Detailing an integrated, systems-oriented approach that bridges both chemical syntheses and manufacturing processes, this invaluable reference covers: Green chemistry and green engineering in the movement toward sustainability Designing greener, safer chemical synthesis Designing greener, safer chemical manufacturing processes Looking beyond current processes to a lifecycle thinking perspective Trends in chemical processing that may lead to more sustainable practices The authors also provide real-world examples and exercises to promote further thought and discussion. The EPA defines green chemistry as the design of chemical products and processes that reduce or eliminate the use or generation of hazardous substances. Green engineering is described as the design, commercialization, and use of products and processes that are feasible and economical while minimizing both the generation of pollution at the source and the risk to human health and the environment. While there is no shortage of books on either discipline, Green Chemistry and Engineering is the first to truly integrate the two.

Green Chemistry

Kenneth Hall was diagnosed with Asperger’s Syndrome at the age of eight. Here he describes some of the inner experiences and perceptions of autism in childhood. He has a warm and positive attitude which other children will find inspiring. Insights, struggles and joys are recounted vividly in a frank and humorous way.

Green Chemistry

The world faces significant challenges as the population and consumption continue to grow while nonrenewable fossil fuels and other raw materials are depleted at ever-increasing rates. Moreover, environmental consciousness and a penchant for thinking in terms of material cycles have caught on with consumers: the use of environmentally compatible materials and production methods is desired. This volume, Green Materials and Environmental Chemistry: New Production Technologies, Unique Properties, and Applications takes a technical approach to address these issues using green design and analysis. This book provides an overview of the latest developments in environmental chemistry and sustainable materials written by experts in their respective research areas. This interdisciplinary volume offers research with the aim to minimize environmental impacts across all lifecycle phases in the design and engineering of products, processes, and systems as just one possible approach to addressing the larger issue of sustainability that includes environmental, economic, and social aspects.

Green Chemistry and Computational Chemistry

To an increasing extent, “green chemistry” is a new chemical and engineering approach of chemistry and engineering, dedicated to make manufacturing processes and our world as a whole more sustainable world with a growing tendency. "Green chemistry" approaches are based on eco-friendly technologies, aiming to reduce or eliminate the use of solvents, or render them efficient and safer. Moreover, this scientific field is devoted to reduction or elimination of prevailing environmental and health threats, which typically accompany chemical products and traditional processes. The present book “Green Chemistry” contains 9 selected chapters, starting with a general introductory chapter on “green chemistry,” and covers many recent applications and developments based on the principles of “green chemistry." This book is considered the appropriate way to communicate the advances in green materials and their applications to the scientific community. Chemists, scientists and researchers from related areas, and undergraduates involved in environmental issues and interested in approaches to improve the quality of life could find an inspiring and effective guide by reading this book.

Green Chemistry for Beginners

Sustainable development is now accepted as a necessary goal for achieving societal, economic and environmental objectives. Within this chemistry has a vital role to play. The chemical industry is successful but traditionally success has come at a heavy cost to the environment. The challenge for chemists and others is to develop new products, processes and services that achieve societal, economic and environmental benefits. This requires an approach that reduces the materials and energy intensity of chemical processes and products; minimises the dispersion of harmful chemicals in the environment; maximises the use of renewable resources and extends the durability and recyclability of products in a way that increases industrial competitiveness as well as improve its tarnished image.

Green Chemistry Education
The “greening” of industry processes, i.e. making them more sustainable, is a popular and often lucrative trend which has emerged over recent years. The 4th volume of Green Chemical Processing considers sustainable chemistry in the context of education and explores didactic approaches. The American Chemical Society’s 12 Principles of Green Chemistry are woven throughout this text as well as the series to which this book belongs.

Sustainable Solvents

The book presents an in-depth review from eminent industry practitioners and researchers of the emerging green face of multidimensional environmental chemistry. Topics such as green chemistry in industry, green energy: solar photons to fuels, green nanotechnology and sustainability, and green chemistry modeling address a wide array of issues encouraging the use of economical ecofriendly benign technologies, which not only improve the yield, but also illustrate the concept of zero waste, a subject of interest to both chemists and environmentalists alike.

Green Materials and Environmental Chemistry

Green chemistry is a work tool that can be applied in different areas such as medicine, materials, polymers, food, organic chemistry, etc., since it was propounded in the early 2000s. It has become a viable alternative for care, remediation and protection of the environment and has been implemented worldwide. In this book the twelve principles of green chemistry are presented in a simple way, with examples of the applications of green chemistry in numerous areas showcasing it as an ideal alternative for environmental care. It also provides information on current research being implemented at the pilot plant and industrial level. The book demonstrates the importance of the use of renewable raw materials, the use of catalysis and the implementation of alternative energy sources such as the use of microwaves and ultrasound in different separation and chemical processes.

Green Chemistry and Technologies

Although many were skeptical of the green chemistry movement at first, it has become a multimillion-dollar business. In preventing the creation of hazardous wastes, laboratories and corporations can save millions in clean up efforts and related health costs. This book supplies students with concepts commonly taught in undergraduate general chemistry and general engineering courses, but with a green perspective. It is unique in presenting an integrated discussion of green chemistry and engineering from first principles - not as an afterthought. Real-world examples show creative problem solving based on the latest issues.

Green Chemistry and Engineering

With escalating concerns over the current state of our planet, the realization to work toward reducing our environmental footprint is gaining momentum. Scientists have realized that green chemistry is the key to reduce waste, rendering healthy environment, and improving human health. The 12 principles of green chemistry are the basic tenets that require understanding at the most fundamental level and implementation to promoting sustainable synthesis. This book discusses innovations in the form of greener technologies (superior green catalysts, alternate reaction media, and green energy sources) and elaborates their tremendous potential in combating the critical global challenges on the horizon. It intends to empower and educate students to grasp the key concepts of green chemistry, think out of the box and come up with new ideas, and apply the basic concepts in greening the world. It extensively covers the goals of the United Nation’s 2030 Agenda of Sustainable Development, which can be successfully achieved with the aid of green chemistry. It also highlights cutting-edge greener technologies such as biomimicry, miniaturization, and continuous flow. Edited by two active green chemists, the book presents in-depth knowledge of this field and is extremely helpful for undergraduate, graduate, and postgraduate readers, as well as academic and industrial researchers.

Problem-Solving Exercises in Green and Sustainable Chemistry

Catalysis, Green Chemistry and Sustainable Energy

When confronted with a problem in science, the way to proceed is not always obvious. The problem may seem intractable or there may be many possible solutions, with some better than others. Problem-Solving Exercises in Green and Sustainable Chemistry teaches students how to analyze and solve real-world problems that occur in an environmental context, and it encourages creativity in developing solutions to situations based on events that have actually taken place. The problems described in this book are relevant and stimulating in learning and understanding the principles of green and sustainable chemistry. They address various aspects of the field, including: Toxicity, Waste generation and disposal, Chemical accidents
Energy efficiency New policy development The final chapter contains proposed solutions to the presented problems and provides commentaries and references to relevant literature. This book also prompts students to become more comfortable with the idea of multiple “correct” answers to problems. It emphasizes the reality that green chemistry is about making practical decisions and weighing multiple factors that are often conflicting, thus making it difficult or impossible to apply one perfect solution to a given situation. Problem-Solving Exercises in Green and Sustainable Chemistry prepares students to solve challenging problems, whether as green chemists, as architects designing energy-efficient buildings, or as environmentally-conscious citizens.

Green Chemistry and Sustainable Technology

Environmental chemistry is a fast developing science aimed at deciphering fundamental mechanisms ruling the behaviour of pollutants in ecosystems. Applying this knowledge to current environmental issues leads to the remediation of environmental media, and to new, low energy, low emission, sustainable processes. Nanotechnology applications for alternative energies such as solar power, fuel cells, hydrogen and lithium batteries are reviewed in the first section. Recent investigations on carbon nanotubes, nanocatalysts and cyclodextrins disclose unprecedented techniques to monitor and clean pollutants such as greenhouse gases, heavy metals, pesticides, pathogens occurring in water, air and soil. The second section reviews the risks for human health of critical pollutants such as endocrine disruptors, dioxins and heavy metals contaminating seafood and sediments. An exhaustive review of DDT isomers reveals unexpected mechanisms of DDT transfer to fishes. A chapter on pollutant geochronology using river sedimentary archives provides novel insights on pollution history since the beginning of the anthropocene. This book will be a valuable source of information for engineers and students developing novel applied techniques to monitor and clean pollutants in air, wastewater, soils and sediments.