Pulmonary Vascular Physiology And Pathophysiology Lung Biology In Health And Disease

This new book provides an accessible review of the field of lung biology and disease aimed at the graduate or medical student and biomedical researcher. The book starts by considering the anatomy and ultrastructure of the lung and the tracheal and bronchial system, the control of respiration as well as the fundamentals of pulmonary physiology, gas exchange and circulation. This is followed by discussion of the regulation of acid-base balance, high altitude physiology and pathophysiology as well as exercise and the pulmonary system. Chapters follow on the immunology of the lung, lung injury, asthma and emphysema, granulomatous lung disease, inhalation of toxic substances as well as diseases of the small airways. The final chapter considers current research into lung transplantation.

Molecular and Functional Insights Into the Pulmonary Vasculature

This easy yet comprehensive reference guide covers the mechanisms of respiratory diseases, explaining the main respiratory conditions for clinicians and postgraduate trainees. It discusses their aetiology as well as the basic concepts required to effectively evaluate and treat them. Applied Respiratory Pathophysiology is the first book to bring together detailed, clinically-relevant explanation of respiratory physiological processes and pathophysiological processes in one text. It is essential reading for anyone diagnosing and treating specific clinical conditions of the lungs.
Membrane Receptors, Channels and Transporters in Pulmonary Circulation

Membrane Receptors, Channels and Transporters in Pulmonary Circulation is a proceeding of the 2008 Grover Conference (Lost Valley Ranch and Conference Center, Sedalia, Colorado; September 3-7, 2008), which provided a forum for experts in the fields of those receptors, channels and transporters that have been identified as playing key roles in the physiology and pathophysiology of the pulmonary circulation. The book rigorously addresses: i) recent advances in our knowledge of receptors, channels and transporters and their role in regulation of pulmonary vascular function; ii) how modulation of expression and function of receptors, channels and transporters and their interrelationships contribute to the pathogenesis of pulmonary vascular disease; and iii) the therapeutic opportunities that may be revealed by enhancing our understanding of this area. The overall goal was to explore the mechanisms by which specific receptors, channels and transporters contribute to pulmonary vascular function in both health and disease, and how this knowledge may lead to novel interventions in lung dysplasia, pulmonary edema, lung injury, and pulmonary and systemic hypertension to reduce and prevent death from lung disease.

Membrane Receptors, Channels and Transporters in Pulmonary Circulation is divided into six parts. Part 1 (Ion Channels in the Pulmonary Vasculature: Basics and New Findings) is designated for basic knowledge and recent findings in the research field of ion channels in pulmonary circulation. There are five chapters in Part I discussing the function, expression, distribution and regulation of various ion channels present in pulmonary vascular smooth muscle cells and how these channels are integrated to regulate intracellular Ca2+ and cell functions. Part II (TRP Channels in the Pulmonary Vasculature: Basics and New Findings) is composed of five chapters that are exclusively designed to discuss the role of a recently identified family of cation channels, transient receptor potential (TRP) channels, in the regulation of pulmonary vascular tone and arterial structure. Part III (Pathogenic Role of Ion Channels in Pulmonary Vascular Disease) includes four chapters that discuss how abnormal function and expression of various ion channels contribute to changes in cell functions and the development of pulmonary hypertension. Part IV (Receptors and Signaling Cascades in Pulmonary Arterial Hypertension) consists of five chapters devoted to the role of bone morphogenetic protein receptors, Notch receptors, serotonin receptors, Rho kinase and vascular endothelial growth factor receptors in the development of pulmonary arterial hypertension. Part V (Receptors and Transporters: Role in Cell Function and Hypoxic Pulmonary Vasoconstriction) includes four chapters designed to illustrate the potential mechanisms involved in oxygen sensing and hypoxia-induced pulmonary vasoconstriction and hypertension. Part VI (Targeting Ion Channels and Membrane Receptors in Developing Novel Therapeutic Approaches for Pulmonary Vascular Disease) consists five chapters which discuss the translational research involving on membrane receptors, channels and transporters, including their potential as novel drug targets. We hope that Membrane Receptors, Channels and Transporters in Pulmonary Circulation will allow readers to foster new concepts and new collaborations and cooperations among investigators so as to further understand the role of receptors, channels and transporters in lung pathophysiology. The ultimate goal is to identify new mechanisms of disease, as well as new therapeutic targets for pulmonary vascular diseases. An additional outcome should be enhanced understanding of the role of these entities in systemic vascular pathophysiology, since the conference will include researchers and clinicians with interests in both pulmonary and systemic circulations.

Cardiovascular Physiology in Exercise and Sport E-Book

This title is directed primarily towards health care professionals outside of the United States. Written by an eminent cardiovascular physiologist with a strong track record in dealing with issues related to exercise and environmental physiology, this text covers
cardiovascular function from the exercise and human physiologist's viewpoint. It provides a solid foundation of knowledge of how the cardiovascular system responds and adapts to the challenges of exercise and environmental change, and analyses the practicalities of measuring cardiovascular parameters in normal human subjects. Case studies in exercise physiology throughout text. Open-ended questions at end of each chapter encourage students to explore common situations facing exercise and human physiologists. Bibliography at end of each chapter directs students to further reading resources. Summaries at start of each chapter and multiple choice questions with explanatory answers at end of book aid revision and help students test their knowledge.

Molecular Mechanism of Congenital Heart Disease and Pulmonary Hypertension

Membrane Receptors, Channels and Transporters in Pulmonary Circulation is a proceeding of the 2008 Grover Conference (Lost Valley Ranch and Conference Center, Sedalia, Colorado; September 3-7, 2008), which provided a forum for experts in the fields of those receptors, channels and transporters that have been identified as playing key roles in the physiology and pathophysiology of the pulmonary circulation. The book rigorously addresses: i) recent advances in our knowledge of receptors, channels and transporters and their role in regulation of pulmonary vascular function; ii) how modulation of expression and function of receptors, channels and transporters and their interrelationships contribute to the pathogenesis of pulmonary vascular disease; and iii) the therapeutic opportunities that may be revealed by enhancing our understanding of this area. The overall goal was to explore the mechanisms by which specific receptors, channels and transporters contribute to pulmonary vascular function in both health and disease, and how this knowledge may lead to novel interventions in lung dysplasia, pulmonary edema, lung injury, and pulmonary and systemic hypertension to reduce and prevent death from lung disease. Membrane Receptors, Channels and Transporters in Pulmonary Circulation is divided into six parts. Part I (Ion Channels in the Pulmonary Vasculature: Basics and New Findings) is designated for basic knowledge and recent findings in the research field of ion channels in pulmonary circulation. There are five chapters in Part I discussing the function, expression, distribution and regulation of various ion channels present in pulmonary vascular smooth muscle cells and how these channels are integrated to regulate intracellular Ca2+ and cell functions. Part II (TRP Channels in the Pulmonary Vasculature: Basics and New Findings) is composed of five chapters that are exclusively designed to discuss the role of a recently identified family of cation channels, transient receptor potential (TRP) channels, in the regulation of pulmonary vascular tone and arterial structure. Part III (Pathogenic Role of Ion Channels in Pulmonary Vascular Disease) includes four chapters that discuss how abnormal function and expression of various ion channels contribute to changes in cell functions and the development of pulmonary hypertension. Part IV (Receptors and Signaling Cascades in Pulmonary Arterial Hypertension) consists of five chapters devoted to the role of bone morphogenetic protein receptors, Notch receptors, serotonin receptors, Rho kinase and vascular endothelial growth factor receptors in the development of pulmonary arterial hypertension. Part V (Receptors and Transporters: Role in Cell Function and Hypoxic Pulmonary Vasoconstriction) includes four chapters designed to illustrate the potential mechanisms involved in oxygen sensing and hypoxia-induced pulmonary vasoconstriction and hypertension. Part VI (Targeting Ion Channels and Membrane Receptors in Developing Novel Therapeutic Approaches for Pulmonary Vascular Disease) consists five chapters which discuss the translational research involving on membrane receptors, channels and transporters, including their potential as novel drug targets. We hope that Membrane Receptors, Channels and Transporters in Pulmonary Circulation will allow readers to foster new concepts and new collaborations and cooperations among investigators so as to further understand the role of receptors, channels and transporters in lung pathophysiology. The ultimate goal is to identify new mechanisms of disease, as well as new therapeutic targets for pulmonary vascular
diseases. An additional outcome should be enhanced understanding of the role of these entities in systemic vascular pathophysiology, since the conference will include researchers and clinicians with interests in both pulmonary and systemic circulations.

Medical Physiology : The Big Picture

Textbook of Pulmonary Vascular Diseases combines basic scientific knowledge on the pulmonary circulatory system at levels of the molecule, cell, tissue, and organ with clinical diagnosis and treatment of pulmonary vascular diseases. State-of-the-art techniques and their potential applications in research, diagnosis, and treatment of pulmonary vascular diseases are also covered.

Cardiovascular Physiology,Mosby Physiology Monograph Series (with Student Consult Online Access),10

Pulmonary hypertension is a life-threatening disease with no known cure. Here we provide a concise yet comprehensive review of the current knowledge about the pathophysiology of pulmonary hypertension (PH). The underlying signaling mechanisms involved in pulmonary vascular remodeling and the exaggerated vascular contractility, two characteristic features of pulmonary hypertension, are discussed in depth. The roles of inflammation, immunity, and right ventricular function in the pathobiology of pulmonary hypertension are discussed. The epidemiology of the five groups of pulmonary hypertension (World Health Organization classification; Nice, 2013) is also briefly described. A clear understanding of our current knowledge about the pathogenesis of PH is essential for further exploration of the underlying mechanisms involved in this disease and for the development of new therapeutic modalities. This book should be of interest to researchers and graduate students, both in basic research and in clinical settings, in the fields of pulmonary vascular biology and pulmonary hypertension.

Pulmonary Hypertension: Diagnosis and Treatment

Cardiovascular disease remains the chief cause of mortality and morbidity in adults in many parts of the world, and diagnosis and treatment is increasingly based on cellular, intracellular, and molecular parameters as well as systems analysis. Consequently, it is vital that medical students learn the fundamental physiology of the cardiovascular system. This book, along with its interactive electronic learning modules, breathes life into the subject, with animations, videos, and game-like decision-making.

Cardiovascular Physiology

Hypertension is a condition which affects millions of people worldwide and its treatment greatly reduces the risk of strokes and heart attacks. This fully revised and updated edition of the ABC of Hypertension is an established guide providing all thenon-specialist needs to know about the measurement of blood pressure and the investigation and management of hypertensive patients. This new edition provides comprehensively updated and revised information on how and whom to treat. The ABC of Hypertension will prove invaluable to general practitioners who may be screening large numbers of patients for hypertension, as well as nurse practitioners, midwives and other healthcare professionals.
Acutely pulmonary embolism (APE) has a high mortality and many cases of APE go undiagnosed, as the pulmonary circulation is relatively hidden from clinical examination. The pathophysiology of APE is not completely understood, as there is a complex interplay of mechanisms that contribute to the disorder’s response. A difficulty in treating APE is that the mechanisms contributing to response are not well defined, and therefore it is difficult to predict which patients will respond most sensitively to a given clot load based on clinical evidence. Insight into the mechanisms of APE progression and severity has relied on controlled animal studies. Pigs are a widely-used experimental animal for representing human physiology and pathophysiology, because their comparative anatomy, as well as physiological and pathophysiological responses, are said to closely resemble that of humans. However, differences between pig and human in size and lung anatomy leads to translational limitations that are sometimes overlooked. Computational models with appropriate validation could bridge the gap in translating data from animal studies to human clinical practice. In the area of APE this translation is currently limited by a lack of a validated structure-function model for perfusion of the porcine lung. The branching geometry of the pulmonary arterial and venous trees in pig is different in structure to the human pulmonary vasculature, and studies have previously suggested that species-specific branching asymmetry of the pulmonary blood vessels contributes to differences observed in pulmonary blood flow distribution between species. A realistic model that accurately reflects the geometry and mechanical properties of the in vivo porcine lung is therefore critical for translating detailed investigation of structure-function relationships in the pulmonary circulation of the pig to human. The overall aim of this research was to develop a novel, validated computational model for the porcine pulmonary circulation, that can be used to understand the interplay between the fundamental mechanisms of pulmonary vascular disease. A structure-based theoretical model that integrates new imaging and experimental data, plus previous experimental and clinical observations, is presented here. This thesis presents a quantitative analysis of the pulmonary arteries in five pig lungs, characterising their branching pattern, inter-subject similarity, and self-similarity in branching geometry. A summary model for the self-similar pulmonary arterial tree is described. A method for generating anatomically-based finite element models of the porcine pulmonary vascular tree was developed, based on previous volume-filling branching methods and the new knowledge of the porcine pulmonary arterial tree morphometry. Subject-specific spatially distributed models were generated for each animal using this new method (in the prone posture, at close to full lung expansion), and the full pulmonary arterial tree geometry statistics were compared with experimental data from the five animals. The generated models were consistent with the data with respect to key morphometric parameters of branching angles, rates of reduction of branch diameter and length with branch order, rate of increase of number of branches in an order with reduction in order, ratios of minor or major child diameters to parent diameter, and length to diameter ratios. A multi-scale model was implemented to simulate the distribution of perfusion in the porcine lung. The model includes an approximation for the deformation of the lung tissue due to change in lung size and posture. Model predictions for the lung supine, at close to functional residual capacity, compared well with the haemodynamic data from each animal at baseline. The performance of the model was assessed for predicting haemodynamics and gas exchange following arterial occlusion in APE. The model predicted the general trends of the experimental data, but was not completely consistent with regional functional imaging.
small vessels (arterio-venous shunts, or supernumerary vessels) could be important for mitigating increase in pulmonary vascular resistance when the proportion of occluded lung increases. An important question was whether a subject-specific model is necessary for all studies, or whether a single (generic) geometry with appropriate boundary conditions is sufficient to reproduce the important behaviours of the pulmonary circulation. A generic species-specific model was therefore developed and validated, by demonstrating that any subject-specific porcine model can be parameterised to reflect individual pulmonary vascular function that has been measured for any other subject. The model was extended further by including a model for hypoxic pulmonary vasoconstriction. Simulation of normoxic and hypoxic ventilation was compared against experimental data from an independent study. The model prediction of arterial constriction during hypoxia (indicated by elevation of pulmonary artery pressure) and change in blood gases from normoxia were consistent with experiment. This research has established a new validated model to complement animal experimental studies, such that the interaction of mechanisms that contribute to APE can be investigated and presented in a quantitative way.

Pathologic Physiology and Therapy of Diseases

Offers a current and comprehensive review of the pathophysiology, diagnosis, and treatment of pulmonary hypertension and venous thromboembolism. Discusses indepth the pharmacologic and non-pharmacologic therapies used in the treatment of pulmonary vascular disease -- including the benefits and risks of each -- allowing for more informed care decisions.

Membrane Receptors, Channels and Transporters in Pulmonary Circulation

An Introduction to Cardiovascular Physiology is designed primarily for students of medicine and physiology. This introductory text is mostly didactic in teaching style and it attempts to show that knowledge of the circulatory system is derived from experimental observations. This book is organized into 15 chapters. The chapters provide a fuller account of microvascular physiology to reflect the explosion of microvascular research and include a discussion of the fundamental function of the cardiovascular system involving the transfer of nutrients from plasma to the tissue. They also cover major advances in cardiovascular physiology including biochemical events underlying Starling's law of the heart, nonadrenergic, non-cholinergic neurotransmission, the discovery of new vasoactive substances produced by endothelium and the novel concepts on the organization of the central nervous control of the circulation. This book is intended to medicine and physiology students.

Mechanical Concepts in Cardiovascular and Pulmonary Physiology

Membrane Receptors, Channels and Transporters in Pulmonary Circulation is a proceedings of the 2008 Grover Conference (Lost Valley Ranch and Conference Center, Sedalia, Colorado; September 3-7, 2008), which provided a forum for experts in the fields of those receptors, channels and transporters that have been identified as playing key roles in the physiology and pathophysiology of the pulmonary circulation. The book rigorously addresses: i) recent advances in our knowledge of receptors, channels and transporters and their role in regulation of pulmonary vascular function; ii) how modulation of expression and function of receptors, channels and transporters and their interrelationships contribute to the pathogenesis of pulmonary vascular disease; and iii) the therapeutic opportunities that may be revealed.
by enhancing our understanding of this area. The overall goal was to explore the mechanisms by which specific receptors, channels and transporters contribute to pulmonary vascular function in both health and disease, and how this knowledge may lead to novel interventions in lung dysplasia, pulmonary edema, lung injury, and pulmonary and systemic hypertension to reduce and prevent death from lung disease. Membrane Receptors, Channels and Transporters in Pulmonary Circulation is divided into six parts. Part 1 (Ion Channels in the Pulmonary Vasculature: Basics and New Findings) is designated for basic knowledge and recent findings in the research field of ion channels in pulmonary circulation. There are five chapters in Part I discussing the function, expression, distribution and regulation of various ion channels present in pulmonary vascular smooth muscle cells and how these channels are integrated to regulate intracellular Ca2+ and cell functions. Part II (TRP Channels in the Pulmonary Vasculature: Basics and New Findings) is composed of five chapters that are exclusively designed to discuss the role of a recently identified family of cation channels, transient receptor potential (TRP) channels, in the regulation of pulmonary vascular tone and arterial structure. Part III (Pathogenic Role of Ion Channels in Pulmonary Vascular Disease) includes four chapters that discuss how abnormal function and expression of various ion channels contribute to changes in cell functions and the development of pulmonary hypertension. Part IV (Receptors and Signaling Cascades in Pulmonary Arterial Hypertension) consists of five chapters devoted to the role of bone morphogenetic protein receptors, Notch receptors, serotonin receptors, Rho kinase and vascular endothelial growth factor receptors in the development of pulmonary arterial hypertension. Part V (Receptors and Transporters: Role in Cell Function and Hypoxic Pulmonary Vasoconstriction) includes four chapters designed to illustrate the potential mechanisms involved in oxygen sensing and hypoxia-induced pulmonary vasoconstriction and hypertension. Part VI (Targeting Ion Channels and Membrane Receptors in Developing Novel Therapeutic Approaches for Pulmonary Vascular Disease) consists five chapters which discuss the translational research involving on membrane receptors, channels and transporters, including their potential as novel drug targets. We hope that Membrane Receptors, Channels and Transporters in Pulmonary Circulation will allow readers to foster new concepts and new collaborations and cooperations among investigators so as to further understand the role of receptors, channels and transporters in lung pathophysiology. The ultimate goal is to identify new mechanisms of disease, as well as new therapeutic targets for pulmonary vascular diseases. An additional outcome should be enhanced understanding of the role of these entities in systemic vascular pathophysiology, since the conference will include researchers and clinicians with interests in both pulmonary and systemic circulations.

Applied Respiratory Pathophysiology

L. B. STRANG The past 25 years have seen a remarkable growth in our knowledge of lung development in its structural, physiological and biochemical dimensions. Much of the impetus for research leading to new knowledge has derived from the perception that many respiratory disorders in the newborn infant are due to defective development or maladaption of some component or components of the respiratory system. Thus, to cite one example, surfactant deficiency is clearly seen to be the cause of atelectasis in hyaline membrane disease; and to cite another, it is widely accepted that the mechanisms controlling patency of the ductus arteriosus and pulmonary vascular resistance also determine the right-to-left or left-to-right shunting frequently observed in the course of neonatal respiratory disorders. There are, however, areas of physiological knowledge - such as those relating to respiratory control and to liquid formation and absorption - which are clearly of great relevance to lung adaptation at birth but where it has not yet proved possible to link a specific clinical state to the malfunction of a particular mechanism. In planning this symposium an attempt was made to organize the material in an orderly manner, starting with the embryonic and fetal stages of growth and development, continuing with respiratory control and the role of surfactant in
lung aeration at birth, and ending with the treatment of neonatal respiratory disorders.

Membranes in Pulmonary Vascular Disease

Nitric oxide is an endogenously produced gas with a wide range of biological effects and has been implicated in many physiological and pathophysiological processes. It is released by many cell types in various organs but is particularly important in the maintenance of normal lung function. Nitric oxide in exhaled breath has been identified as a marker for lung disease in some patients. Thus, it is appropriate to consider the lung separately for the role and functioning of nitric oxide. The authors identify key areas in the history, biochemistry, physiology, pathophysiology, immunology and clinical applications of nitric oxide in the lung. The contents of this book will be of particular importance to scientists and clinicians with an interest in lung disease. Moreover, the authors encompass state of the art opinions of and rational for the therapeutic potential of nitric oxide and its inhibitors.

Cardiovascular Physiology

Part of the Oxford Textbooks in Anaesthesia series, this title covers the anatomy and physiology, pharmacology, post-operative complications, critical care, and all clinical aspects of cardiac and thoracic anaesthesia. Practical aspects, such as team working, and designing and equipping cardiothoracic theatre and critical care, are also included. The expert and international author team use their experience to ensure this title reflects current world-wide practice across the globe.

A Computational Model to Predict Function in Experimental Pulmonary Embolism

This book provides a comprehensive review of the structure, function and pathophysiology of the pulmonary vasculature. Emerging evidence reveals the multifaceted roles played by the pulmonary vasculature. To reflect those roles, the individual chapters address topics ranging from pulmonary blood vessel development to vascular endothelial apoptosis, and delve deeply into our current understanding of various aspects of the pulmonary vasculature.

Pulmonary Physiology and Pathophysiology in Isolated Mouse Lungs

The Lung Circulation deals with important aspects of the lung circulation, with emphasis on the physiology of the pulmonary and bronchial circulation and autonomic pharmacology. Topics covered range from the role of anoxia in pulmonary circulation to reflexes arising from the pulmonary circulation and neighboring structures. The release of chemical substances from the pulmonary and bronchial circulation is also discussed. This volume is comprised of 10 chapters and begins with a review of the influence of anoxia on pulmonary circulation as well as four pertinent effects of anoxemia, namely, respiratory stimulation; cardiac stimulation; systemic vasoconstriction and vasodilatation; and pulmonary vasoconstriction and vasodilatation). The following chapters focus on the regulation of bronchial circulation; autonomic nervous control of pulmonary circulation involving acetylcholine, anticholinesterases, and atropine; and the pharmacology of sympathomimetic drugs, sympathetic blocking drugs, ganglion stimulants, and blocking drugs. The final chapter is devoted to the pharmacology of the
autonomic nervous system and considers drugs that stimulate chemoreflexes arising from the lung circulation, including veratrum alkaloids. This book will appeal to physiologists and pharmacologists.

Textbook of Pulmonary Vascular Disease

A unique system/disease-based approach to learning pulmonary pathophysiology as it relates to clinical medicine. No other review puts disorders of lung structure and function in such clear clinical perspective as Pulmonary Pathophysiology. Bridging the gap between basic science and clinical medicine, Pulmonary Pathophysiology guides you from symptom identification to underlying disease mechanisms and through principles of management. Features: 28 case studies help you understand the correlation between science and clinical medicine. Additional algorithms aid differential diagnosis and management. Key Concepts help you quickly review chapter highlights. New tables and charts encapsulate important information. Learning Objectives and study questions reinforce your understanding of even the most difficult topics. Artwork includes nearly 100 photographs and line drawings. Visit www.LangeTextbooks.com to access valuable resources and study aids!

Pulmonary Vascular Disease

A concise yet complete overview of the treatment of cardiovascular instability in the critically ill patient. The authors consider all aspects, ranging from basic physiology and pathophysiology to diagnostic tools and established and novel forms of therapy. The whole is rounded off with an integration of these principles into a series of clinically relevant scenarios.

The Lung Circulation

ABC of Hypertension

Gain a foundational understanding of cardiovascular physiology and how the cardiovascular system functions in health and disease. Cardiovascular Physiology, a volume in the Mosby Physiology Series, explains the fundamentals of this complex subject in a clear and concise manner, while helping you bridge the gap between normal function and disease with pathophysiology content throughout the book. Helps you easily master the material in a systems-based curriculum with learning objectives, Clinical Concept boxes, highlighted key words and concepts, chapter summaries, self-study questions, and a comprehensive exam to help prepare for USMLEs. Keeps you current with the latest concepts in vascular, molecular, and cellular biology as they apply to cardiovascular function, thanks to molecular commentaries in each chapter. Includes clear, 2-color diagrams that simplify complex concepts. Features clinical commentaries that show you how to apply what you've learned to real-life clinical situations. Complete the Mosby Physiology Series! Systems-based and portable, these titles are ideal for integrated programs. Blaustein, Kao, & Matteson: Cellular Physiology and Neurophysiology Cloutier: Respiratory Physiology Koeppen & Stanton: Renal Physiology Johnson: Gastrointestinal Physiology White, Harrison, & Mehlmann: Endocrine and Reproductive Physiology Hudnall: Hematology: A Pathophysiologic Approach
Cardiovascular Physiology - E-Book

The Mosby Physiology Monograph Series offers the fundamentals of body systems physiology in a clear and concise manner. Each volume in the series is written by experts in the field for an authoritative, yet readable introduction to the physiology relevant to a particular organ system. This new 9th edition of Cardiovascular Physiology offers:

- Clear, accurate and up-to-the-minute coverage of the physiology of the cardiovascular system focusing on the needs of the student.
- Pathophysiology content throughout that serves as a bridge between normal function and disease.
- Integrated student-friendly tools, including learning objectives, overview boxes, key words and concepts, chapter summaries, and clinical cases with questions and explained answers.
- Access to Student Consult®! www.studentconsult.com is an innovative website that allows you to build a personalized, fully integrated, online library, where you'll find the entire contents of every STUDENT CONSULT title purchased, integration links to bonus content in other STUDENT CONSULT titles, and much more.

Cardiovascular Physiology

This book provides a concise yet comprehensive review of the morphological, biochemical, electrical, mechanical, and metabolic properties of vascular smooth muscle, the regulation of vascular activities and the intracellular signaling involved. It particularly focuses on recently identified vasoactive agents, enzymes and transduction mechanisms. It also discusses the latest findings in the regulation of cerebral, coronary and pulmonary circulation as well as vascular activity under hypoxia and ageing. The contraction and dilatation activities of vasculature are of fundamental importance for maintaining circulation homeostasis and adapting physiological changes. Over the last four decades, there have been significant advances in our understanding of the biochemical, structural, genetic, physiological, and pharmacological aspects of vascular activity regulation, and these insights into the responsiveness of blood vessels under normal and pathophysiological conditions help to provide valuable weapons in the fight vascular diseases. The book is of interest to researchers and graduate students, both in basic research and in clinic settings, in the field of vascular biology.

Nitric Oxide in Pulmonary Processes

Membranes in Pulmonary Vascular Disease, Volume 82, the latest release in the Current Topics in Membranes series, highlights new advances in the field, with this new volume presenting interesting chapters from recognized experts on topics such as Sphingolipids in Vascular Lung Disease, Endothelial Glycocalyx, Cholesterol Regulation of Endothelial Cell Calcium Homeostasis in Pulmonary Hypertension, Mechanosensitive Channels and Gap Junction Channels in EC, Endothelial Protrusions in Junctional Integrity and Barrier Function, Cortical Actin Dynamics in Endothelial Permeability, Endothelial Microparticles and Exosomes, Store Operated TRP Channels and Endothelial Responses, and Caveolin and Endothelial NO signaling. Provides the authority and expertise of leading contributors from an international board of authors.

Pathophysiology of Pulmonary Hypertension

Page 10/15
A medical condition involving an increase in the pressure of blood within the arteries of the lungs is known as pulmonary hypertension. Its common symptoms include shortness of breath, fast heartbeat, chest pain, syncope, tiredness and swelling of the legs. A detailed analysis of the person's family history and physical examination are required for diagnosing pulmonary hypertension. Other diagnostic techniques include echocardiography, electrocardiography, chest X-rays, arterial blood gas tests and computed tomography scans. Prostacyclin, treprostinil, sildenafil, calcium channel blockers, etc. are some medications that may be used for the management of pulmonary hypertension. This condition can also be surgically addressed via atrial septostomy, pulmonary thromboendarterectomy and lung transplantation. This book explores all the important aspects of the diagnosis and treatment of pulmonary hypertension in the present day scenario. The various advancements in its diagnosis and treatment are glanced at and their applications as well as ramifications are looked at in detail. This book, with its detailed analyses and data, will prove immensely beneficial to professionals and students.

Oxford Textbook of Cardiothoracic Anaesthesia

The Pulmonary Endothelium is a uniquely comprehensive compendium of our current knowledge of the pulmonary endothelium and is the first book dedicated specifically to the subject, offering insights into current and future approaches to management. The text provides the clinician with the most up-to-date information on one of the core physiological processes in airway disease and is an ideal point of reference for both postgraduates and professionals - specialist physicians in pulmonology and allergy and workers in biomedical and pharmaceutical research.

Pulmonary Physiology and Pathophysiology

Membrane Receptors, Channels and Transporters in Pulmonary Circulation is a proceeding of the 2008 Grover Conference (Lost Valley Ranch and Conference Center, Sedalia, Colorado; September 3-7, 2008), which provided a forum for experts in the fields of those receptors, channels and transporters that have been identified as playing key roles in the physiology and pathophysiology of the pulmonary circulation. The book rigorously addresses: i) recent advances in our knowledge of receptors, channels and transporters and their role in regulation of pulmonary vascular function; ii) how modulation of expression and function of receptors, channels and transporters and their interrelationships contribute to the pathogenesis of pulmonary vascular disease; and iii) the therapeutic opportunities that may be revealed by enhancing our understanding of this area. The overall goal was to explore the mechanisms by which specific receptors, channels and transporters contribute to pulmonary vascular function in both health and disease, and how this knowledge may lead to novel interventions in lung dysplasia, pulmonary edema, lung injury, and pulmonary and systemic hypertension to reduce and prevent death from lung disease. Membrane Receptors, Channels and Transporters in Pulmonary Circulation is divided into six parts. Part 1 (Ion Channels in the Pulmonary Vasculature: Basics and New Findings) is designated for basic knowledge and recent findings in the research field of ion channels in pulmonary circulation. There are five chapters in Part I discussing the function, expression, distribution and regulation of various ion channels present in pulmonary vascular smooth muscle cells and how these channels are integrated to regulate intracellular Ca2+ and cell functions. Part II (TRP Channels in the Pulmonary Vasculature: Basics and New Findings) is composed of five chapters that are exclusively designed to discuss the role of a recently identified family of cation channels, transient receptor potential (TRP) channels, in the regulation of pulmonary vascular tone and arterial structure. Part III (Pathogenic Role of Ion Channels in Pulmonary Vascular Disease)
includes four chapters that discuss how abnormal function and expression of various ion channels contribute to changes in cell functions and the development of pulmonary hypertension. Part IV (Receptors and Signaling Cascades in Pulmonary Arterial Hypertension) consists of five chapters devoted to the role of bone morphogenetic protein receptors, Notch receptors, serotonin receptors, Rho kinase and vascular endothelial growth factor receptors in the development of pulmonary arterial hypertension. Part V (Receptors and Transporters: Role in Cell Function and Hypoxic Pulmonary Vasoconstriction) includes four chapters designed to illustrate the potential mechanisms involved in oxygen sensing and hypoxia-induced pulmonary vasoconstriction and hypertension. Part VI (Targeting Ion Channels and Membrane Receptors in Developing Novel Therapeutic Approaches for Pulmonary Vascular Disease) consists five chapters which discuss the translational research involving on membrane receptors, channels and transporters, including their potential as novel drug targets. We hope that Membrane Receptors, Channels and Transporters in Pulmonary Circulation will allow readers to foster new concepts and new collaborations and cooperations among investigators so as to further understand the role of receptors, channels and transporters in lung pathophysiology. The ultimate goal is to identify new mechanisms of disease, as well as new therapeutic targets for pulmonary vascular diseases. An additional outcome should be enhanced understanding of the role of these entities in systemic vascular pathophysiology, since the conference will include researchers and clinicians with interests in both pulmonary and systemic circulations.

Pathophysiology of Pulmonary Hypertension

This open access book focuses on the molecular mechanism of congenital heart disease and pulmonary hypertension, offering new insights into the development of pulmonary circulation and the ductus arteriosus. It describes in detail the molecular mechanisms involved in the development and morphogenesis of the heart, lungs and ductus arteriosus, covering a range of topics such as gene functions, growth factors, transcription factors and cellular interactions, as well as stem cell engineering technologies. The book also presents recent advances in our understanding of the molecular mechanism of lung development, pulmonary hypertension and molecular regulation of the ductus arteriosus. As such, it is an ideal resource for physicians, scientists and investigators interested in the latest findings on the origins of congenital heart disease and potential future therapies involving pulmonary circulation/hypertension and the ductus arteriosus.

Physiology of the Fetal and Neonatal Lung

This new book with 35 chapters is a comprehensive account of the important features of the pulmonary circulation which will appeal to (1) clinical and non-clinical students who want a broad-based introduction to the subject, (2) postgraduates involved in or contemplating research on the pulmonary circulation, (3) specialists in chest medicine, cardiology and intensive and critical care whose clinical work concerns diseases affecting the pulmonary blood vessels. Pulmonary circulation is well illustrated with 132 figures, 43 tables and learning points highlighted at the end of each chapter. There are two main sections: “Basic Mechanisms” and “Clinical Practice”. All the important features of the pulmonary circulation are reviewed — genetics, cell biology, vascular remodelling, anatomy, physiology, pharmacology, pulmonary hypertension, pulmonary oedema, etc.
A basic understanding of cardiovascular physiology is essential for optimal patient care. This practical book provides a concise tutorial of all the essential aspects of cardiovascular hemodynamics and the techniques used to assess cardiovascular performance. A high-yield reference, this book is replete with figures, tracings, tables, and clinical pearls that reinforce the basic tenets of hemodynamics. From identifying key findings of the patient history and physical exam to correlating hemodynamic tracings with acute clinical presentations, this book arms the reader with the tools necessary to handle any hemodynamic-related situation.

Membrane Receptors, Channels and Transporters in Pulmonary Circulation

This book provides coverage of the mammalian cardiovascular system and the physiological mechanisms that maintain normal function, from the molecular and cellular level to the integrated function of the entire human organism. The author also reviews historical developments in the field, and offers a detailed survey of hemodynamic variables and methods for measuring cardiovascular function.

Biology of Vascular Smooth Muscle: Vasoconstriction and Dilatation

Pulmonary Circulation: From Basic Mechanisms To Clinical Practice

The main goal of this book is to form a high-quality platform in which well-known and emerging pioneering basic, translational and clinical scientists can present their latest, exciting findings in the studies of redox signaling in the pulmonary vasculature. Content from outstanding investigators with unique expertise and skills of molecular and cell biology, biochemistry, physiology, pharmacology, biophysics, biotechnology and medicine will update our current out-of-date concepts with new knowledge. Rapidly increasing scientific studies have gathered a large volume of novel and important information on redox signaling in healthy and diseased pulmonary vasculature. This volume covers the need for a cohesive book to display state-of-the-art advances in the field. The second major aim of this book is to help direct future research. Redox signaling is a major molecular process involved in almost every physiologic cellular response in the pulmonary vasculature including energy metabolism, host defense, gene expression, contraction, proliferation, and migration. Aberrancy in this important signaling pathway leads to a critical role in the development of nearly all pulmonary diseases, such as pulmonary hypertension, cor pulmonale, pulmonary edema, and vasculitis, among others.

Applied Cardiovascular Physiology

The Pulmonary Endothelium

Pulmonary hypertension is a life-threatening disease with no known cure. Here we provide a concise yet comprehensive review of the current knowledge about the pathophysiology of pulmonary hypertension (PH). The underlying signaling mechanisms involved in
pulmonary vascular remodeling and the exaggerated vascular contractility, two characteristic features of pulmonary hypertension, are discussed in depth. The roles of inflammation, immunity, and right ventricular function in the pathobiology of pulmonary hypertension are discussed. The epidemiology of the five groups of pulmonary hypertension (World Health Organization classification; Nice, 2013) is also briefly described. A clear understanding of our current knowledge about the pathogenesis of PH is essential for further exploration of the underlying mechanisms involved in this disease and for the development of new therapeutic modalities. This book should be of interest to researchers and graduate students, both in basic research and in clinical settings, in the fields of pulmonary vascular biology and pulmonary hypertension.

Cardiovascular Hemodynamics

The Second Edition of Pulmonary Physiology and Pathophysiology presents normal and abnormal pulmonary function in the same case-based format that has made the first edition a favorite among students. Each chapter begins with a clinical case study of diseases typically seen by practitioners. The cases are followed by a discussion and breakdown of the physiology, pathophysiology, anatomy, pharmacology, and pathology for each disease, and a question-and-answer section. This edition has an infectious diseases chapter, updates on asthma pathogenesis and bronchodilators, and user-friendly features such as chapter openers, chapter outlines, "key points" summary boxes, and board-formatted questions and answers.

An Introduction to Cardiovascular Physiology

Get the BIG PICTURE of Medical Physiology -- and focus on what you really need to know to ace the course and board exams! 4-Star Doody's Review! "This excellent, no-frills approach to physiology concepts is designed to help medical students and other health professions students review the basic concepts associated with physiology for the medical profession. The information is concise, accurate and timely." If you don't have unlimited study time Medical Physiology: The Big Picture is exactly what you need! With an emphasis on what you “need to know” versus “what's nice to know,” and enhanced with 450 full-color illustrations, it offers a focused, streamlined overview of medical physiology. You'll find a succinct, user-friendly presentation designed to make even the most complex concepts understandable in a short amount of time. With just the right balance of information to give you the edge at exam time, this unique combination text and atlas features: A “Big Picture” perspective on precisely what you must know to ace your course work and board exams Coverage of all the essential areas of Physiology, including General, Neurophysiology, Blood, Cardiovascular, Pulmonary, Renal and Acid Base, Gastrointestinal, and Reproductive 450 labeled and explained full-color illustrations 190 board exam-style questions and answers -- including a complete practice test at the end of the book Special icon highlights important clinical information

Pulmonary Vasculature Redox Signaling in Health and Disease

Detailing state-of-the-art developments in the various aspects of primary pulmonary hypertension (PPH), this practical reference explores the history, most current scientific concepts, and treatments of this disease. Includes new advances not yet formally published! Written by nearly 30 of the top international experts in the field, Primary Pulmonary Hypertension addresses the general histological features of the
normal and hypertensive pulmonary vasculature and the pathology of PPH discusses etiological possibilities of pathogenesis, common morphological features, and findings in experimental models examines risks factors for PPH and looks separately at familial PPH and PPH in children presents an approach to the differential diagnosis of pulmonary hypertension, emphasizing the recognition of PPH elucidates the invasive and noninvasive modalities available for obtaining qualitative and quantitative hemodynamic data for the diagnosis of PPH covers a variety of therapeutic options and much more!

Copyright code: bc1c155530a7277f3a4ea472c1d1afa7